Roman k-tuple Domination in Graphs

Adel P. Kazemi
Department of Mathematics, University of Mohaghegh Ardabili
P.O. Box 5619911367, Ardabil, Iran.
E-mail: adelpkazemi@yahoo.com

Abstract

For any integer $k \geq 1$ and any graph $G=(V, E)$ with minimum degree at least $k-1$, we define a function $f: V \rightarrow\{0,1,2\}$ as a Roman k-tuple dominating function on G if for any vertex v with $f(v)=0$ there exist at least k and for any vertex v with $f(v) \neq 0$ at least $k-1$ vertices w in its neighborhood with $f(w)=2$. The minimum weight of a Roman k-tuple dominating function f on G is called the Roman k-tuple domination number of the graph where the weight of f is $f(V)=\sum_{v \in V} f(v)$.

In this paper, we initiate to study the Roman k-tuple domination number of a graph, by giving some tight bounds for the Roman k-tuple domination number of a garph, the Mycieleskian of a graph, and the corona graphs. Also finding the Roman k-tuple domination number of some known graphs is our other goal. Some of our results extend these one given by Cockayne and et al. [1] in 2004 for the Roman domination number.

Keywords: Roman k-tuple domination number, Roman k-tuple graph, k Tuple domination number, k-Tuple total domination number.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

All graphs considered here are finite, undirected and simple. For standard graph theory terminology not given here we refer to [9]. Let $G=(V, E)$ be a graph with the vertex set V of order $n(G)$ and the edge set E of size $m(G)$.

[^0]The open neighborhood of a vertex $v \in V$ is $N_{G}(v)=\{u \in V \mid u v \in E\}$, while its cardinality is the degree of v. The closed neighborhood of v is defined by $N_{G}[v]=N_{G}(v) \cup\{v\}$. Similarly, the open and closed neighborhoods of a subset $X \subseteq V$ are $N_{G}(X)=\cup_{v \in X} N_{G}(v)$ and $N_{G}[X]=N_{G}(X) \cup X$, respectively. The minimum and maximum degree of G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. If $\delta=\Delta=k$, then G is called k-regular. We write K_{n}, C_{n}, P_{n}, and W_{n} for a complete graph, a cycle, a path, and a wheel of order n, respectively, while $K_{n_{1}, \ldots, n_{p}}$ denotes a complete p-partite graph. Also $G[S]$ and \bar{G} denote the subgraph induced by a subset $S \subseteq V$ and the complement of G, respectively. Also $G \cong H$ means that two graphs G and H are isomorphic.

For any integer $k \geq 1$, the k-join $G \circ_{k} H$ of a graph G to a graph H of order at least k is the graph obtained from the disjoint union of G and H and joining each vertex of G to at least k vertices of H [5].

Domination in graphs is now well studied in graph theory and the literature on this subject has been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [3, 4]. One type of domination is k-tuple domination number that was introduced by Harary and Haynes [2].

Definition 1.1. [2] For any positive integer k, a subset $S \subseteq V$ is a k-tuple dominating set, abbreviated $k \mathrm{DS}$, of the graph G, if $\left|N_{G}[v] \cap S\right| \geq k$ for every $v \in$ V. The k-tuple domination number $\gamma_{\times k}(G)$ of G is the minimum cardinality among the k-tuple dominating sets of G.

Henning and Kazemi in [5] introduced another type of domination called k-tuple total domination number of a graph which is an extension of the total domination number.

Definition 1.2. [5] For any integer $k \geq 1$, a subset $S \subseteq V$ is called a k tuple total dominating set, abbreviated $k T D S$, of G if for every vertex $v \in V$, $|N(v) \cap S| \geq k$. The k-tuple total domination number $\gamma_{\times k, t}(G)$ of G is the minimum cardinality of a $k T D S$ of G.

Note that the 1-tuple domination number (1-tuple total domination number) is the classical domination number $\gamma(G)$ (total domination number $\gamma_{t}(G)$). A $k \mathrm{DS}(k \mathrm{TDS})$ of minimum cardinality of a graph G is called a min- $k \mathrm{DS}$ or $\gamma_{\times k}(G)$-set (min-kTDS or $\gamma_{\times k, t}(G)$-set).

According to [1], Constantine the Great (Emperor of Rome) issued a decree in the 4 th century A.D. for the defense of his cities. He decreed that any city without a legion stationed to secure it must neighbor another city having two stationed legions. If the first were attacked, then the second could deploy a legion to protect it without becoming vulnerable itself. The objective, of course, is to minimize the total number of legions needed. According to it, Ian Steward by an article in Scientific American, entitled Defend the Roman Empire! [8] suggested the Roman dominating function.

In [6], Kämmerling and Volkmann extended the Roman dominating function to the Roman k-dominating function in this way that for any vertex v with $f(v)=0$ there are at least k vertices w in its neighborhood with $f(w)=2$, and they defined the Roman k-domination number $\gamma_{k R}(G)$ of a graph G as the minimum weight of a Roman k-dominating function f on G where the weight of f is $f(V)=\sum_{v \in V} f(v)$.

This problem that for securing a city without a legion stationed or a city with at least one legion stationed we need at least, respectively, k or $k-1$ cities having two stationed legions, is our motivation to define the concept of Roman k-tuple domination number which is another extension of the Roman domination number.
Definition 1.3. For any integer $k \geq 1$, a Roman k-tuple dominating function, abbreviated $R k D F$, on a graph G with minimum degree at least $k-1$ is a function $f: V \rightarrow\{0,1,2\}$ such that for any vertex v with $f(v)=0$ there exist at least k and for any vertex v with $f(v) \neq 0$ there exist at least $k-1$ vertices w in its neighborhood with $f(w)=2$. The Roman k-tuple domination number $\gamma_{\times k R}(G)$ of a graph G is the minimum weight of a RkDF f on G.

The Roman 1-tuple domination number is the usual Roman domination number $\gamma_{R}(G)$.

A min- $\mathrm{R} k \mathrm{DF}$ is a $\mathrm{R} k \mathrm{DF}$ with the minimum weight. For a $\mathrm{R} k \mathrm{DF} f$ let $\left(V_{0}, V_{1}, V_{2}\right)$ be the ordered partition of V induced by f where $V_{i}=\{v \in V \mid$ $f(v)=i\}$ for $i=0,1,2$. Since there is a one-to-one correspondence between the function f and the ordered partitions $\left(V_{0}, V_{1}, V_{2}\right)$ of V, we will write $f=$ $\left(V_{0}, V_{1}, V_{2}\right)$. Figure 1 shows a min-R2DF of cycle C_{10}.

Figure 1. $\gamma_{\times 2 R}\left(C_{10}\right)=14$
In this paper, we initiate to study the Roman k-tuple domination number of a graph, by giving some tight bounds for the Roman k-tuple domination number of a garph, the Mycieleskian of a graph, and the corona graphs. Also finding the Roman k-tuple domination number of some known graphs is our other goal. Some of our results extend these one given by Cockayne and et al. [1] in 2004 for the Roman domination number.

2. General Results

In this section, we state some properties of the Roman k-tuple dominating functions, and some tight bounds for the Roman k-tuple domination number of a graph.

Proposition 2.1. For any min-RkDF $f=\left(V_{0}, V_{1}, V_{2}\right)$ on a graph G with $\delta(G) \geq k-1$, the following statements hold.
(a) $\gamma_{\times k R}(G) \geq \gamma_{k R}(G)$.
(b) $V_{1} \cup V_{2}$ is a $k D S$ of G.
(c) V_{2} is a $k D S$ of $G\left[V_{0} \cup V_{2}\right]$.
(d) For $k \geq 2, V_{2}$ is a $(k-1) T D S$ of G.
(e) Every vertex of degree $k-1$ belongs to $V_{1} \cup V_{2}$.
(f) $G\left[V_{1}\right]$ has maximum degree 1 .
(g) Every vertex in V_{1} is adjacent to precisely $k-1$ vertices in V_{2}.
(h) Each vertex in V_{0} is adjacent to at most two vertices in V_{1}.

Proof. We omit the proofs of (a)-(e); they are clear. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be any min-R $k \mathrm{DF}$ of G.
(f) For any $x \in V_{1}$, since $f^{\prime}=\left(V_{0} \cup\left(N(x) \cap V_{1}\right), V_{1}-N(x), V_{2} \cup\{x\}\right)$ with the value $f^{\prime}(V)=f(V)-d+1$, is a $\mathrm{R} k \mathrm{DF}$ on G if and only if $d \leq 1$, we conclude that $G\left[V_{1}\right]$ has maximum degree 1 .
(g) For any $x \in V_{1}$, let $\left|N(x) \cap V_{2}\right|=d$. Then $d \geq k-1$. Since $d \geq k$, for some $x \in V_{1}$, implies that $f^{\prime}=\left(V_{0} \cup\{x\}, V_{1}-\{x\}, V_{2}\right)$ is a $\mathrm{R} k \mathrm{DF}$ on G with the value $f^{\prime}(V)=f(V)-1=\gamma_{\times k R}(G)-1$, we obtain $d=k-1$.
(h) For $x \in V_{0}$, let $\left|N(x) \cap V_{1}\right|=d$. Since $f^{\prime}=\left(V_{0} \cup\left(N(x) \cap V_{1}\right), V_{1}-\right.$ $\left.N(x), V_{2} \cup\{x\}\right)$ is a $\mathrm{R} k \mathrm{DF}$ on G with the value $f^{\prime}(V)=f(V)-d+2 \geq f(V)$, we have $d \leq 2$.

As a consequence of Proposition 2.1 (c),(d), we have the following result.
Corollary 2.2. If G is a Roman k-tuple graph, that is $\gamma_{\times k R}(G)=2 \gamma_{\times k}(G)$, then

$$
2 \max \left\{\gamma_{\times(k-1), t}(G), \gamma_{\times k}(G)\right\} \leq \gamma_{\times k R}(G)
$$

For any graph $G=(V, E)$ of order n and with minimum degree at least $k-1 \geq 1$, since $(\emptyset, \emptyset, V)$ is a $\mathrm{R} k \mathrm{DF}$ on G, we have $\gamma_{\times k R}(G) \leq 2 n$. On the other hand, since for any $\mathrm{R} k \mathrm{DF} f=\left(V_{0}, V_{1}, V_{2}\right),\left|V_{2}\right| \geq k$, we have $\gamma_{\times k R}(G) \geq 2 k$. Also, it can be easily verified that $\gamma_{\times k R}(G)=2 k$ if and only if $G=K_{k}$ or $G=H \circ_{k} K_{k}$ for some graph H. Therefore we have proved next theorem.

Theorem 2.3. For any graph G of order n and with $\delta(G) \geq k-1 \geq 1$,

$$
2 k \leq \gamma_{\times k R}(G) \leq 2 n
$$

and $\gamma_{\times k R}(G)=2 k$ if and only if $G=K_{k}$ or $G=H \circ_{k} K_{k}$ for some graph H.

Theorem 2.3 characterizes graphs G with $\gamma_{\times k R}(G)=2 k$. Next proposition characterizes graphs G with $\gamma_{\times k R}(G)=2 k+1$. First we construct a graph.

Graphs \mathcal{A}_{k}. Let $n \geq k+1 \geq 3$. For $n=k+1$ let \mathcal{A}_{k} be the complete graph K_{k+1} minus an edge, and for $n>k+1$ let \mathcal{A}_{k} be the graph with the vertex set $V=\left\{v_{i} \mid 1 \leq i \leq n\right\}$ such that the induced subgraph $\mathcal{A}_{k}\left[\left\{v_{i} \mid 1 \leq i \leq\right.\right.$ $k+1\}] \cong K_{k+1}-\left\{v_{k} v_{k+1}\right\}$, and for any $i \geq k+2,\left\{v_{j} \mid 1 \leq j \leq k\right\} \subseteq N_{\mathcal{A}_{k}}\left(v_{i}\right)$.

Proposition 2.4. For any graph G with $\delta(G) \geq k-1 \geq 1, \gamma_{\times k R}(G)=2 k+1$ if and only if $G \cong \mathcal{A}_{k}$.

Proof. Let G be a graph with $\delta(G) \geq k-1 \geq 1$. If $G \cong \mathcal{A}_{k}$, then obviousely $\left(V_{0}, V_{1}, V_{2}\right)$ is a min-R $k \mathrm{DF}$ on G where $V_{2}=\left\{v_{i} \mid 1 \leq i \leq k\right\}, V_{1}=\left\{v_{k+1}\right\}$ and $V_{0}=V\left(\mathcal{A}_{k}\right)-V_{1} \cup V_{2}$, and so $\gamma_{\times k R}(G)=2 k+1$.

Conversely, let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a min-R $k \mathrm{DF}$ on G with weight $2 k+1$. Hence $\left|V_{2}\right|=k$ and $\left|V_{1}\right|=1$. If $V_{2}=\left\{v_{i} \mid 1 \leq i \leq k\right\}$ and $V_{1}=\left\{v_{k+1}\right\}$, then $\gamma_{\times k R}(G)=2 k+1$ implies that there exists a vertex in V_{2}, say v_{k}, which is not adjacent to v_{k+1}, that is, $G \cong \mathcal{A}_{k}$.

Note that if $k \geq 2$ and G is $(k-1)$-regular, then $\gamma_{\times k R}(G)=2 n$. We will show that its converse holds only for $k=2$. For $k \geq 3$, for example, if G is a graph which is obtained by the complete bipartite graph $K_{k, k}$ minus a matching of size $k-1$, then $\gamma_{\times k R}(G)=4 k$ while G is not $(k-1)$-regular.

Proposition 2.5. For any graph G of order n and without isolate vertex, $\gamma_{\times 2 R}(G)=2 n$ if and only if $G=\ell K_{2}$ for some $\ell \geq 1$.

Proof. Let $G=(V, E)$ be a graph of order n and without isolate vertex, and let $\gamma_{\times 2 R}(G)=2 n$. Since $\operatorname{deg}(w) \geq 2$, for some vertex w, implies that the function $(\{w\}, \emptyset, V-\{w\})$ is a R2DF on G with weight less than $2 n$, we conclude $G=\ell K_{2}$ for some $\ell \geq 1$. Since the proof of inverse case is trivial, we have completed our proof.

Cockayne and et al. in [1] proved that for any graph G,

$$
\begin{equation*}
\gamma(G) \leq \gamma_{R}(G) \leq 2 \gamma(G) \tag{2.1}
\end{equation*}
$$

As an extension of inequality (2.1), next theorem improves the lower bound $2 k$ given in Theorem 2.3 for $k \geq 2$.

Theorem 2.6. For any graph G with $\delta(G) \geq k-1 \geq 1$,

$$
\gamma_{\times k}(G)+k \leq \gamma_{\times k R}(G) \leq 2 \gamma_{\times k}(G)
$$

and the lower bound is tight.
Proof. Since for any min- $k \mathrm{DS} S$ of $G=(V, E)$, the function $f=(V-S, \emptyset, S)$ is a $\mathrm{R} k \mathrm{DF}$ on G, we have $\gamma_{\times k R}(G) \leq 2|S|=2 \gamma_{\times k}(G)$. On the other hand,
since for any min- $\mathrm{R} k \mathrm{DF} f=\left(V_{0}, V_{1}, V_{2}\right)$ on $G, V_{1} \cup V_{2}$ is a $k \mathrm{DS}$ of G, we have

$$
\gamma_{\times k R}(G)=2\left|V_{2}\right|+\left|V_{1}\right| \geq \gamma_{\times k}(G)+\left|V_{2}\right| \geq \gamma_{\times k}(G)+k
$$

For any graph H of order k, the lower bound is tight for $G=\overline{K_{k}} \circ_{*(k-1)} K_{k}$. Because ($\left.\emptyset, V\left(\overline{K_{k}}\right), V\left(K_{k}\right)\right)$ is a min- $\mathrm{R} k \mathrm{DF}$ on G and $V\left(K_{k}\right)$ is a min- $k \mathrm{DS}$ of G.

Following E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemi and S. T. Hedetniemi [1], we will say that a graph G is a Roman k-tuple graph if $\gamma_{\times k R}(G)=$ $2 \gamma_{\times k}(G)$. Next proposition characterizes the Roman k-tuple graphs.

Proposition 2.7. A graph G with $\delta(G) \geq k-1$ is a Roman k-tuple graph if and only if it has a min-RkDF $f=\left(V_{0}, \emptyset, V_{2}\right)$, that is, V_{2} is a min- $k D S$ of G.

Proof. Let G be a Roman k-tuple graph, and let S be a min- $k \mathrm{DS}$ of G. Since $f=(V-S, \emptyset, S)$ is a $\mathrm{R} k \mathrm{DF}$ on G with weight $f(V)=2|S|=2 \gamma_{\times k}(G)=$ $\gamma_{\times k R}(G)$, we conclude that f is a min-R $k \mathrm{DF}$.

Conversely, if $f=\left(V_{0}, \emptyset, V_{2}\right)$ is a min-R $k \mathrm{DF}$ on G, then $\gamma_{\times k R}(G)=2\left|V_{2}\right|$, and V_{2} is a $k \mathrm{DS}$ of G. Hence $\gamma_{\times k}(G) \leq\left|V_{2}\right|=\gamma_{\times k R}(G) / 2$. Applying Theorem 2.6 implies $\gamma_{\times k R}(G)=2 \gamma_{\times k}(G)$, that is, G is a Roman k-tuple graph.

Corollary 2.8. [1] A graph G is a Roman graph if and only if it has a min-RDF $f=\left(V_{0}, \emptyset, V_{2}\right)$.

3. Complete bipartite graphs, paths, cycles and wheels

Here, we calculate the Roman k-tuple domination number of a complete bipartite graph, a cycle, a path, and a wheel.

Proposition 3.1. For any integer $n \geq m \geq k-1 \geq 1$,

$$
\gamma_{\times k R}\left(K_{n, m}\right)= \begin{cases}3 k-3+n & \text { if } n \geq m=k-1 \\ 4 k-2 & \text { if } n \geq m=k \\ 4 k-1 & \text { if } n=m=k+1 \\ 4 k & \text { if } n>m \geq k+1\end{cases}
$$

Proof. Assume that $V\left(K_{n, m}\right)$ is partitioned to the independent sets X and Y such that $|X|=n$ and $|Y|=m$. Since the Roman k-tuple dominating functions given in each of the following cases have minimum weight, our proof is completed.

- $n \geq m=k-1$. Consider $f=(\emptyset, \emptyset, X \cup Y)$ when $n=m$, and consider $f=\left(\emptyset, V_{1}, V_{2}\right)$ when $n>m$ in which $Y \subseteq V_{2},\left|V_{2} \cap X\right|=k-1$ and $V_{1}=X-V_{2}$.
- $n \geq m=k$. Consider $f=\left(V_{0}, \emptyset, V_{2}\right)$ where $\left|V_{2} \cap Y\right|=k,\left|V_{2} \cap X\right|=k-1$ and $V_{0}=X \cup Y-V_{2}$.
- $n=m=k+1$. Consider $f=\left(V_{0}, V_{1}, V_{2}\right)$ where $\left|V_{2} \cap Y\right|=k,\left|V_{2} \cap X\right|=$ $k-1, V_{1}=Y-V_{2}$ and $V_{0}=X \cup Y-V_{1} \cup V_{2}$.
- $n>m \geq k$. Consider $f=\left(V_{0}, \emptyset, V_{2}\right)$ where $\left|V_{2} \cap X\right|=\left|V_{2} \cap Y\right|=k$ and $V_{0}=X \cup Y-V_{2}$.

Corollary 3.2. If $n>m \geq k+1 \geq 3$, then $\gamma_{\times k R}\left(K_{n, m}\right)=k \gamma_{R}\left(K_{n, m}\right)$.
Proof. It is sufficient to consider

$$
\gamma_{\times R}\left(K_{n, m}\right)= \begin{cases}2 & \text { if } n \geq m=1 \\ 3 & \text { if } n \geq m=2 \\ 4 & \text { if } n \geq m \geq 3\end{cases}
$$

In the next two propositions, we will calculate $\gamma_{\times 2 R}\left(C_{n}\right)$ and $\gamma_{\times 2 R}\left(P_{n}\right)$ (notice $\gamma_{\times 3 R}\left(C_{n}\right)=2 n$ by Proposition 2.1).
Proposition 3.3. For any cycle C_{n} of order $n \geq 3, \gamma_{\times 2 R}\left(C_{n}\right)=2\left\lceil\frac{2 n}{3}\right\rceil$.
Proof. Let C_{n} be a cycle with $V\left(C_{n}\right)=\{1,2, \ldots, n\}$ and $E\left(C_{n}\right)=\{i j \mid j \equiv i+1$ $(\bmod n), 1 \leq i \leq n\}$. Since $\left(V_{0}, \emptyset, V\left(C_{n}\right)-V_{0}\right)$ is a R2DF on C_{n} where $V_{0}=\left\{3 t+1 \left\lvert\, 0 \leq t \leq\left\lfloor\frac{n}{3}\right\rfloor-1\right.\right\}$, we have $\gamma_{\times 2 R}\left(C_{n}\right) \leq 2\left\lceil\frac{2 n}{3}\right\rceil$.

On the other hand, since in each R2DF every three consecutive vertices have at least weight 4 , we have $\gamma_{\times 2 R}\left(C_{n}\right) \geq\left\lceil\frac{4 n}{3}\right\rceil$. Since $\left\lceil\frac{4 n}{3}\right\rceil=2\left\lceil\frac{2 n}{3}\right\rceil$ where $n \not \equiv 2(\bmod 3)$, we consider $n \equiv 2(\bmod 3)$. Then $\left\lceil\frac{4 n}{3}\right\rceil=2\left\lceil\frac{2 n}{3}\right\rceil-1$. Now let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a min-R2DF on C_{n}. Since every vertex in V_{2} is adjacent to at least one vertex in V_{2} and f has minimum weight, we conclude $i-1, i \in V_{2}$ implies $i+1 \in V_{0}$ as possible as. Therefore for $0 \leq t \leq\left\lfloor\frac{n}{3}\right\rfloor-1, f(3 t+1)=0$ and $f(3 t)=f(3 t+2)=2$. This implies $f(n-2)=f(n-1)=2$, and so $\gamma_{\times 2 R}\left(C_{n}\right)=f\left(V\left(C_{n}\right)\right)=\left\lceil\frac{4 n}{3}\right\rceil+1=2\left\lceil\frac{2 n}{3}\right\rceil$.

Proposition 3.4. For any path P_{n} of order $n \geq 2$,

$$
\gamma_{\times 2 R}\left(P_{n}\right)= \begin{cases}2\left\lceil\frac{2 n}{3}\right\rceil & \text { if } n \equiv 1,2 \quad(\bmod 3) \\ 2\left\lceil\frac{2 n}{3}\right\rceil+1 & \text { if } n=3, \\ 2\left\lceil\frac{2 n}{3}\right\rceil+2 & \text { otherwise }\end{cases}
$$

Proof. Let P_{n} be a path with $V\left(P_{n}\right)=\{1,2, \ldots, n\}$ and let $E\left(P_{n}\right)=\{i j \mid j=$ $i+1,1 \leq i \leq n-1\}$. Since $\left(\emptyset, \emptyset, V\left(P_{n}\right)\right)$ is the only min-R2DF on P_{2} and $(\emptyset,\{1\},\{2,3\})$ is a min-R2DF on P_{3}, we consider $n \geq 4$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a min-R2DF on P_{n}. Then $f(1)=f(n)=1$, and $f(2)=f(3)=f(n-2)=$ $f(n-1)=2$, which implies $\gamma_{\times 2 R}\left(P_{4}\right)=6, \gamma_{\times 2 R}\left(P_{5}\right)=8, \gamma_{\times 2 R}\left(P_{6}\right)=10$, as desired. So, we assume $n \geq 7$. Let $\mathcal{L}=V\left(P_{n}\right)-\{1,2,3, n-2, n-1, n\}$. Since every three consecutive vertices in \mathcal{L} have at least weight 4 and every two consecutive vertices in it have at least weight 2 , we conclude $\left(V_{0}, V_{1}, V_{2}\right)$
is a min-R2DF on P_{n} where $V_{0}=\left\{3 t+1 \left\lvert\, 1 \leq t \leq\left\lfloor\frac{n-1}{3}\right\rfloor-1\right.\right\}, V_{1}=\{1, n\}$, $V_{2}=V\left(P_{n}\right)-V_{0} \cup V_{1}$, and this completes our proof.

Since it can be easily verified that for any $n \geq 3$,

$$
\gamma_{\times 2}\left(C_{n}\right)= \begin{cases}\left\lceil\frac{2 n}{3}\right\rceil & \text { if } n \text { is odd } \\ \left\lfloor\frac{2 n}{3}\right\rfloor & \text { if } n \text { is even }\end{cases}
$$

and for any $n \geq 2$,

$$
\gamma_{\times 2}\left(P_{n}\right)= \begin{cases}\left\lceil\frac{2 n}{3}\right\rceil & \text { if } n \equiv 0,2,5,8 \quad(\bmod 9) \\ \left\lceil\frac{2 n}{3}\right\rceil+1 & \text { otherwise }\end{cases}
$$

by Propositions 3.3 and 3.4, the next result charactrizes cycles and paths which are Roman 2-tuple graph.

Proposition 3.5. i. Any cycle C_{n} is a Roman 2-tuple graph if and only if $n \not \equiv 2,4(\bmod 6)$.
ii. Any path P_{n} is a Roman 2-tuple graph if and only if $n \neq 3$ and $n \not \equiv$ $0,1,4,7(\bmod 9)$.

Finally, we consider wheels. We recall that W_{n} denotes a wheel of order $n \geq$ 4 with $V\left(W_{n}\right)=\left\{v_{0}, v_{1}, \cdots, v_{n-1}\right\}$ such that $\operatorname{deg}\left(v_{0}\right)=n-1$ and $\operatorname{deg}\left(v_{i}\right)=3$ for $1 \leq i \leq n-1$. Here, we calculate $\gamma_{\times k R}\left(W_{n}\right)$ when $1 \leq k \leq 4$ (because $\left.\delta\left(W_{n}\right)=3 \geq k-1\right)$. Since $\gamma_{R}\left(W_{n}\right)=2$ and $\gamma_{\times 4 R}\left(W_{n}\right)=2 n$, we consider $k=2,3$. First we recall a result from [6].

Lemma 3.6. [6] For any wheel W_{n} of order $n \geq 4$ and any integer k,

$$
\gamma_{k R}\left(W_{n}\right)= \begin{cases}2 & \text { if } k=1 \\ \left\lceil\frac{2 n+4}{3}\right\rceil & \text { if } k=2 \\ n & \text { if } k \geq 3\end{cases}
$$

Proposition 3.7. For any wheel W_{n} of order $n \geq 4$,

$$
\gamma_{\times k R}\left(W_{n}\right)= \begin{cases}\left\lceil\frac{2 n+4}{3}\right\rceil & \text { if } k=2 \\ 2 n-2\left\lfloor\frac{n-1}{3}\right\rfloor & \text { if } k=3\end{cases}
$$

Proof. We prove in the following two cases.

- $k=2$. Let $X=\left\{v_{3 t+1} \left\lvert\, 0 \leq t \leq\left\lfloor\frac{n-1}{3}\right\rfloor-1\right.\right\} \cup\left\{v_{0}\right\}$ and let $V_{0}=$ $V\left(W_{n}\right)-\left(V_{1} \cup V_{2}\right)$ in a R2DF $\left(V_{0}, V_{1}, V_{2}\right)$ on W_{n}. Since
$f=\left(V_{0}, V_{1}, V_{2}\right)=\left\{\begin{array}{lll}\left(V_{0}, \emptyset, X \cup\left\{v_{n-2}\right\}\right) & \text { if } n \equiv 0 \quad(\bmod 3), \\ \left(V_{0}, \emptyset, X\right) & \text { if } n \equiv 1 \quad(\bmod 3), \\ \left(V_{0},\left\{v_{n-2}\right\}, X\right) & \text { if } n \equiv 2 \quad(\bmod 3),\end{array}\right.$
is a R2DF on W_{n} with weight $\left\lceil\frac{2(n-1)}{3}\right\rceil+2=\left\lceil\frac{2 n+4}{3}\right\rceil$, we obtain $\gamma_{\times 2 R}\left(W_{n}\right)=\left\lceil\frac{2 n+4}{3}\right\rceil$, by Proposition 2.1-(a) and Lemma 3.6.
- $k=3$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a minimal R3DF on W_{n}. Since every vertex, except probably v_{0}, has degree 3 and v_{0} is adjacent to all other $n-1$ vertices, we conclude $v_{0} \in V_{2}$. Also, we know $v_{i} \in V_{2}$, for some $1 \leq i \leq n-1$, implies $v_{i-1}, v_{i+1} \in V_{2}$. By considering these facts and the minimality of the weight of f, we obtain $V_{1}=\emptyset$ and $\left|V_{0}\right| \leq\left\lfloor\frac{n-1}{3}\right\rfloor$. Hence $\gamma_{\times 3 R}\left(W_{n}\right) \geq 2\left|V_{2}\right|=2 n-2\left|V_{0}\right| \geq 2 n-2\left\lfloor\frac{n-1}{3}\right\rfloor$. On the other hand, since $\left(\left\{v_{3 t+1} \left\lvert\, 0 \leq t \leq\left\lfloor\frac{n-1}{3}\right\rfloor-1\right.\right\}, \emptyset, V\left(W_{n}\right)-V_{0}\right)$ is a R3DF on W_{n} with weight $2 n-2\left\lfloor\frac{n-1}{3}\right\rfloor$, we obtain $\gamma_{\times 3 R}\left(W_{n}\right)=2 n-2\left\lfloor\frac{n-1}{3}\right\rfloor$.

4. Mycieleskian of a Graph

In this section, we give some shap bounds for the Roman k-tuple domination number of the Mycieleskian of a graph in terms of the same number of the graph and k. Also we present the Roman k-tuple domination number of the Mycieleskian of complete graphs. First we define the Mycieleskian of a graph.

Definition 4.1. [9] The Mycieleskian $M(G)$ of a graph $G=(V, E)$ is a graph with vertex set $V \cup U \cup\{w\}$, and edge set $E \cup\left\{u_{j} v_{i} \mid v_{j} v_{i} \in E\right.$ and $u_{j} \in$ $U\} \cup\left\{u_{j} w \mid u_{j} \in U\right\}$ where $U=\left\{u_{j} \mid v_{j} \in V\right\}$ and $(\{w\} \cup U) \cap V=\emptyset$.

Figure 2 shows the Mycileskian of K_{5}.

Figure 2. The Mycileskian of K_{5}

Theorem 4.2. For any graph G with $\delta(G) \geq k-1 \geq 1$,

$$
\gamma_{\times k R}(G)+\min \{k-1,2\} \leq \gamma_{\times k R}(M(G)) \leq \gamma_{\times k R}(G)+2 k
$$

Proof. Let G be a graph with $\delta(G) \geq k-1 \geq 1$ and vertex set $V=\left\{v_{i} \mid 1 \leq\right.$ $i \leq n\}$. Since for any min- $\mathrm{R} k \mathrm{DF} f=\left(V_{0}, V_{1}, V_{2}\right)$ on G, the function $g=$ $\left(W_{0}, W_{1}, W_{2}\right)$ is a $\mathrm{R} k \mathrm{DF}$ on $M(G)$ with weight $\gamma_{\times k R}(G)+2 k$ where $W_{2}=$ $V_{2} \cup U^{\prime} \cup\{w\}$ for some subset $U^{\prime} \subseteq U$ of cardinality $k-1, W_{1}=V_{1}$ and $W_{0}=V_{0} \cup\left(U-U^{\prime}\right)$, we obtain $\gamma_{\times k R}(M(G)) \leq \gamma_{\times k R}(G)+2 k$.

Now let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a min- $\mathrm{R} k \mathrm{DF}$ on $M(G)$ such that $\left|V_{1} \cap U\right|$ and $\left|V_{2} \cap U\right|$ is as possible as minimum. Let $L=\left\{i \mid u_{i} \in V_{1}\right\}, L^{\prime}=\left\{i \mid v_{i} \in V_{1}\right\}$,
$T=\left\{i \mid u_{i} \in V_{2}\right\}$, and $T^{\prime}=\left\{i \mid v_{i} \in V_{2}\right\}$ where $|T|=t \geq k-1$ (because of $\left.N_{M(G)}(w)=U\right),\left|T^{\prime}\right|=t^{\prime},|L|=\ell$, and $\left|L^{\prime}\right|=\ell^{\prime}$. By proving $\gamma_{\times k R}(M(G)) \geq$ $\gamma_{\times k R}(G)+\min \{k-1,2\}$ in the following three cases, our proof will be completed.

Case 1. $w \in V_{0}$. Then $t \geq k$ and

$$
\left|N_{M(G)}\left(v_{i}\right) \cap V_{2} \cap V\right| \begin{cases}=k-1 & \text { if } i \in L \\ \geq k-1 & \text { if } i \in T \\ \geq k & \text { if } i \notin L \cup T\end{cases}
$$

Let

$$
L_{0}=\left\{v_{i} \in V_{0} \mid i \in L\right\} \cup\left\{v_{i} \in V_{0} \mid i \in T, \text { and }\left|N_{M(G)}\left(v_{i}\right) \cap V_{2} \cap V\right|=k-1\right\}
$$

be a set of cardinality ℓ_{0}. Then $\ell \leq \ell_{0} \leq \ell+t$. By choosing $V_{2}^{\prime}=V_{2} \cap V$, $V_{1}^{\prime}=\left(V_{1} \cap V\right) \cup L_{0}, V_{0}^{\prime}=V-\left(V_{1}^{\prime} \cup V_{2}^{\prime}\right)$, since $f^{\prime}=\left(V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}\right)$ is a $\mathrm{R} k \mathrm{DF}$ on G, we have

$$
\begin{aligned}
\gamma_{\times k R}(G) & \leq f^{\prime}(V) \\
& =\gamma_{\times k R}(M(G))+\ell_{0}-\ell-2 t
\end{aligned}
$$

Hence

$$
\begin{aligned}
\gamma_{\times k R}(M(G)) & \geq \gamma_{\times k R}(G)+2 t+\ell-\ell_{0} \\
& \geq \gamma_{\times k R}(G)+t \\
& \geq \gamma_{\times k R}(G)+k
\end{aligned}
$$

Case 2. $w \in V_{1}$. Then $t=k-1$, and $\ell \leq 1$. Because if $\ell \geq 2$, then by choosing $V_{1}^{\prime}=V_{1} \cap V, V_{2}^{\prime}=V_{2} \cup\{w\}, V_{0}^{\prime}=V(M(G))-V_{1}^{\prime} \cup V_{2}^{\prime}$ the function $f^{\prime}=\left(V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}\right)$ is a $\mathrm{R} k \mathrm{DF}$ on $M(G)$, and so

$$
\begin{aligned}
\gamma_{\times k R}(M(G)) & \leq f^{\prime}(V) \\
& =2\left(\left|V_{2}\right|+1\right)+\left(\left|V_{1}\right|-1\right)-\left|U \cup V_{1}\right| \\
& =\gamma_{\times k R}(M(G))+1-\ell,
\end{aligned}
$$

implying that $\ell \leq 1$. Hence

$$
\left|N_{M(G)}\left(v_{i}\right) \cap V_{2} \cap V\right| \begin{cases}\geq k-1 & \text { if } i \in T \cup L \\ \geq k & \text { if } i \notin L \cup T\end{cases}
$$

Let

$$
L_{1}=\left\{v_{i} \in V_{0} \mid i \in T \cup L, \text { and }\left|N_{M(G)}\left(v_{i}\right) \cap V_{2} \cap V\right|=k-1\right\}
$$

be a set of cardinality ℓ_{1}. Hence $\ell_{1} \leq k$. Then $f^{\prime}=\left(V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}\right)$ is a $\mathrm{R} k \mathrm{DF}$ on G where $V_{2}^{\prime}=V_{2} \cap V, V_{1}^{\prime}=\left(V_{1} \cap V\right) \cup L_{1}, V_{0}^{\prime}=V-\left(V_{1}^{\prime} \cup V_{2}^{\prime}\right)$, and so

$$
\begin{aligned}
\gamma_{\times k R}(G) & \leq f^{\prime}(V) \\
& =2\left|V_{2}\right|+\left|V_{1}\right|-2 k+1+\ell_{1}-\ell \\
& =\gamma_{\times k R}(M(G))-2 k+1+\ell_{1}-\ell
\end{aligned}
$$

Hence

$$
\begin{aligned}
\gamma_{\times k R}(M(G)) & \geq \gamma_{\times k R}(G)+2 k-\ell_{1}+\ell-1 \\
& \geq \gamma_{\times k R}(G)+k-1
\end{aligned}
$$

Case 3. $w \in V_{2}$. (Notice that we may assume that there is no min-R $k \mathrm{DF}$ g on $M(G)$ with $g(w) \neq 2$.) Then

$$
\left|N_{M(G)}\left(v_{i}\right) \cap V_{2} \cap V\right| \begin{cases}\geq k-2 & \text { if } i \in T \cup L \\ \geq k-1 & \text { if } i \notin L \cup T\end{cases}
$$

- Subcase 3.1. $T \cap T^{\prime}=\emptyset$. Then the function $f^{\prime}=\left(V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}\right)$ is a $\mathrm{R} k \mathrm{DF}$ on G where $V_{2}^{\prime}=\left(V_{2} \cap V\right) \cup\left\{v_{i} \mid i \in T\right\}, V_{1}^{\prime}=\left(V_{1} \cap V\right)-\left\{v_{i} \mid i \in\right.$ $\left.T, v_{i} \in V_{1}\right\}$ and $V_{0}^{\prime}=V-\left(V_{1}^{\prime} \cup V_{2}^{\prime}\right)$, and so

$$
\begin{aligned}
\gamma_{\times k R}(G) & \leq f^{\prime}(V) \\
& =2\left|V_{2}\right|+\left|V_{1}\right|-f(U)-f(w)+2 t-\left|T \cap L^{\prime}\right| \\
& =\gamma_{\times k R}(M(G))-\ell-2-\left|T \cap L^{\prime}\right| \\
& \leq \gamma_{\times k R}(M(G))-2
\end{aligned}
$$

which implies $\gamma_{\times k R}(M(G)) \geq \gamma_{\times k R}(G)+2$.

- Subcase 3.2. $T \cap T^{\prime} \neq \emptyset$. Let $f^{\prime \prime}$ be a function which is obtained from f^{\prime} in Subcase 3.1 by adding some needed vertices from $N_{G}\left[v_{i}\right]$ to V_{2}^{\prime} or V_{1}^{\prime} if

$$
\left|N_{G}\left(v_{i}\right) \cap V_{2}\right|< \begin{cases}k & \text { if } f^{\prime}\left(v_{i}\right)=0 \\ k-1 & \text { if } f^{\prime}\left(v_{i}\right) \neq 0\end{cases}
$$

(this is possible because $\left|N_{G}\left[v_{i}\right]\right| \geq k$). Then $f^{\prime \prime}$ is a $\mathrm{R} k \mathrm{DF}$ on G, and so

$$
\begin{aligned}
\gamma_{\times k R}(G) & \leq f^{\prime \prime}(V) \\
& =\gamma_{\times k R}(M(G))-f(U)-f(w)+2\left|T-T^{\prime}\right|-\left|L^{\prime} \cap T\right|+p \\
& =\gamma_{\times k R}(M(G))-\ell-2-2\left|T \cap T^{\prime}\right|-\left|T \cap L^{\prime}\right|+p \\
& \leq \gamma_{\times k R}(M(G))-2
\end{aligned}
$$

where $f^{\prime \prime}(V(G))-f^{\prime}(V(G))=p$. The last inequality is obtained from the facts $p \leq 2 t,\left|T \cap T^{\prime}\right|+\left|T \cap L^{\prime}\right| \leq|T|=t$, and $\left|T \cap T^{\prime}\right| \leq t$. Hence $\gamma_{\times k R}(M(G)) \geq \gamma_{\times k R}(G)+2$.

By $\gamma_{\times k R}\left(K_{n}\right)=2 k$, the next theorem states that the upper bound given in Theorem 4.2 is tight.

Theorem 4.3. For any $n \geq k \geq 2, \gamma_{\times k R}\left(M\left(K_{n}\right)\right)=4 k$.
Proof. Let $V\left(K_{n}\right)=\left\{v_{i} \mid 1 \leq i \leq n\right\}$, and let $V\left(M\left(K_{n}\right)\right)=V \cup U \cup\{w\}$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a min-R $k \mathrm{DF}$ on $M\left(K_{n}\right)$. We show that $f\left(V\left(M\left(K_{n}\right)\right)\right) \geq 4 k$. Since $N_{M\left(K_{n}\right)}(w)=U$ and $N_{M\left(K_{n}\right)}\left(u_{i}\right) \subseteq V \cup\{w\}$ for each $u_{i} \in U$, we have $\left|V_{2} \cap U\right| \geq k-1$ and $\left|V_{2} \cap V\right| \geq k-1$. Let $V_{2} \cap V=\left\{v_{i} \mid i \in I\right\}$ and $V_{2} \cap U=\left\{u_{i} \mid i \in J\right\}$ for some $I, J \subseteq\{1,2, \ldots, n\}$. Then

$$
f\left(V\left(M\left(K_{n}\right)\right)\right)=2(|I|+|J|)+f(w)+f\left(U-V_{2}\right)+f\left(V-V_{2}\right)
$$

and we continue our proof in the following two cases.

- $|J|=k-1$. Then $w \in V_{1} \cup V_{2}$.
- $|I|=k-1$. Then $U-V_{2} \subseteq V_{1}$, and so

$$
\begin{aligned}
f\left(V\left(M\left(K_{n}\right)\right)\right) & \geq 4(k-1)+1+2(n-k+1) \\
& =4 k-3+2(n-k+1) .
\end{aligned}
$$

Since $n \leq 2 k-3$ implies $u_{i}, v_{i} \in V_{2}$ for some $i \in J$, and so $\left|N_{M\left(K_{n}\right)}\left(u_{i}\right) \cap V_{2}\right|<k-1$, we have $n \geq 2 k-2$. Then, since

$$
\begin{aligned}
f\left(V\left(M\left(K_{n}\right)\right)\right) & \geq 4 k-3+2(n-k+1) \\
& \geq 4 k-3+2(k-1) \\
& =6 k-5 \\
& \geq 4 k,
\end{aligned}
$$

when $k \geq 3$, we assume $k=2$. Since $\gamma_{\times 2 R}\left(M\left(K_{2}\right)\right)=2\left\lceil\frac{10}{3}\right\rceil=$ $8=4 k$ by Proposition 3.3, we assume $n \geq 3$ (and so $n-k+1 \geq 2$) which implies

$$
\begin{aligned}
f\left(V\left(M\left(K_{n}\right)\right)\right) & \geq 4 k-3+2(n-k+1) \\
& \geq 4 k+1 .
\end{aligned}
$$

- $|I| \geq k$. Since f has minimum weight, we have $|I|=k$, and so

$$
f\left(V\left(M\left(K_{n}\right)\right)\right)=2 k+2(k-1)+f(w)+f\left(V_{1} \cap U\right) .
$$

If $V_{1} \cap U=\emptyset$, then $U \cap V_{0}=U-V_{2}$. Since every vertex in $U \cap V_{0}$ must be adjacent to all vertices in $V_{2} \cap V$, we have $V_{2} \cap V \subseteq$ $\left\{v_{i} \mid i \in J\right\}$, which is not possible. Therefore $V_{1} \cap U \neq \emptyset$, and so $f\left(V\left(M\left(K_{n}\right)\right)\right) \geq 4 k$.

- $|J| \geq k$. Then

$$
f\left(V\left(M\left(K_{n}\right)\right)\right) \geq 2(|I|+|J|)+f\left(U-V_{2}\right)+f\left(V-V_{2}\right)+f(w) .
$$

Since $|J| \geq k+1$ or $|I| \geq k$ impily $f\left(V\left(M\left(K_{n}\right)\right)\right) \geq 4 k$, we assume $|J|=k$ and $|I|=k-1$. This implies $I \cap J=\emptyset$, and so $n \geq 2 k-1$. On the other hand, $|I|=k-1$ implies $U-V_{2} \subseteq V_{1}$, and so $f\left(U-V_{2}\right) \geq$ $|U|-k=n-k \geq k-1$. Therefore

$$
\begin{aligned}
f\left(V\left(M\left(K_{n}\right)\right)\right) & \geq 2(2 k-1)+k-1 \\
& =5 k-3
\end{aligned}
$$

Since $5 k-3 \geq 4 k$ when $k \geq 3$, we assume $k=2$. But then $\left\{v_{i} \mid i \in\right.$ $J\} \subseteq V_{1}$, which implies $f\left(V\left(M\left(K_{n}\right)\right)\right) \geq 5 k-3+2 \geq 4 k$.
Finally, by choosing a subset $W_{2} \subseteq V\left(M\left(K_{n}\right)\right)$ with this property that $\left|W_{2} \cap V\right|=\left|W_{2} \cap U\right|=k$, and $W_{0}=V\left(M\left(K_{n}\right)\right)-W_{2}$, the function $\left(W_{0}, \emptyset, W_{2}\right)$ is a $\mathrm{R} k \mathrm{DF}$ on $M\left(K_{n}\right)$ with weight $4 k$, implying that $\gamma_{\times k R}\left(M\left(K_{n}\right)\right)=4 k$. Figure 3 shows some min-R3DFs for K_{5} and $M\left(K_{5}\right)$.

Figure 3. $\gamma_{\times 3 R}\left(K_{5}\right)=6$ (left), and $\gamma_{\times 3 R}\left(M\left(K_{5}\right)\right)=12$ (right)

5. The Corona Graphs

Here, we study Roman k-tuple domination number of corona graphs. We recall that for any graphs G and H of orders n and m, respectively, the corona graph $\operatorname{cor}(G, H)$ is a graph obtained from G and H by taking one copy of G and n copies of H and joining with an edge each vertex from the i-th copy of H with the i-th vertex of G. Hereafter, in $\operatorname{cor}(G, H)$ we will denote the set of vertices of G by $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and the i-th copy of H by $H_{i}=\left(W_{i}, E_{i}\right)$.

First we give some bounds for the k-tuple domination number of a corona graph.

Theorem 5.1. For any graphs G and H with $\delta(H) \geq k-2 \geq 0$,

$$
k|V(G)| \leq \gamma_{\times k}(\operatorname{cor}(G, H)) \leq(|V(H)|+1)|V(G)|
$$

and these bounds are tight, and $\gamma_{\times k}(\operatorname{cor}(G, H))=k|V(G)|$ if and only if $H=$ K_{k-1} or $H=F \circ_{k-1} K_{k-1}$ for some graph F.

Proof. Since for any $k \operatorname{DS} S$ of $\operatorname{cor}(G, H)$ and any vertex w in $H_{i}, \mid N_{\operatorname{cor}(G, H)}[w] \cap$ $S \mid \geq k$, and since $V(\operatorname{cor}(G, H))$ is a $k \mathrm{DS}$ of $\operatorname{cor}(G, H)$, we have

$$
k|V(G)| \leq \gamma_{\times k}(\operatorname{cor}(G, H)) \leq(|V(H)|+1)|V(G)|
$$

Obviously, $\gamma_{\times k}(\operatorname{cor}(G, H))=k|V(G)|$ if and only if $H=K_{k-1}$ or $H=F \circ_{k-1}$ K_{k-1} for some graph F. For the upper bound, if H is a $(k-2)$-regular graph, then $\gamma_{\times k}(\operatorname{cor}(G, H))=(|V(H)|+1)|V(G)|$.

Theorem 5.2. For any graphs G and H with $\delta(H) \geq k-1 \geq 1$,

$$
2 k|V(G)| \leq \gamma_{\times k R}(\operatorname{cor}(G, H)) \leq 2 \gamma_{\times k}(\operatorname{cor}(G, H))
$$

Proof. By Theorem 2.6, it is sufficient to prove the lower bound. Let $f=$ $\left(V_{0}, V_{1}, V_{2}\right)$ be a $\mathrm{R} k \mathrm{DF}$ on $\operatorname{cor}(G, H)$ and let v_{i} be a vertex of G. We continueour proof in the following cases. Recall that for any subset $T \subseteq V$, $f(T)=\sum_{v \in T} f(v)$.

- $f\left(v_{i}\right)=0$. If there exists a vertex $v \in W_{i} \cap V_{0}$, then $\left|N_{W_{i}}(v) \cap V_{2}\right| \geq k$, and so $f\left(W_{i} \cup\left\{v_{i}\right\}\right) \geq 2 k$. If there exists a vertex $v \in W_{i} \cap V_{1}$,
then $\left|N_{W_{i}}(v) \cap V_{2}\right| \geq k-1$. Now $k \geq 2$ implies that there exists a vertex $v^{\prime} \in N_{W_{i}}(v) \cap V_{2}$, and so $\left|N_{W_{i}}\left(v^{\prime}\right) \cap V_{2}\right| \geq k-1$. Therefore $\left|\left(N_{W_{i}}(v) \cup N_{W_{i}}\left(v^{\prime}\right)\right) \cap V_{2}\right| \geq k$ which implies $f\left(W_{i} \cup\left\{v_{i}\right\}\right) \geq 2 k+1$. Finally, if $f\left(v^{\prime}\right)=2$ for any $v^{\prime} \in W_{i}$, then $f\left(W_{i} \cup\left\{v_{i}\right\}\right) \geq 2 k$.
- $f\left(v_{i}\right)=1$. If there exists a vertex $v \in W_{i} \cap V_{0}$, then $\left|N_{W_{i}}(v) \cap V_{2}\right| \geq k$, and so $f\left(W_{i} \cup\left\{v_{i}\right\}\right) \geq 2 k+1$. If there exists a vertex $v \in W_{i} \cap V_{1}$, then $\left|N_{W_{i}}(v) \cap V_{2}\right| \geq k-1$. Now $k \geq 2$ implies that there exists a vertex $v^{\prime} \in N_{W_{i}}(v) \cap V_{2}$, and so $\left|N_{W_{i}}\left(v^{\prime}\right) \cap V_{2}\right| \geq k-1$. Therefore $\left|\left(N_{W_{i}}(v) \cup N_{W_{i}}\left(v^{\prime}\right)\right) \cap V_{2}\right| \geq k$ which implies $f\left(W_{i} \cup\left\{v_{i}\right\}\right) \geq 2 k+2$. Finally, if $f\left(v^{\prime}\right)=2$ for any $v^{\prime} \in W_{i}$, then $f\left(W_{i} \cup\left\{v_{i}\right\}\right) \geq 2 k+1$.
- $f\left(v_{i}\right)=2$. If there exists a vertex $v \in W_{i} \cap V_{0}$, then $\left|N_{W_{i}}(v) \cap V_{2}\right| \geq k-1$, and so $f\left(W_{i} \cup\left\{v_{i}\right\}\right) \geq 2 k$. If there exists a vertex $v \in W_{i} \cap V_{1}$, then $\left|N_{W_{i}}(v) \cap V_{2}\right| \geq k-2$, and so $f\left(W_{i} \cup\left\{v_{i}\right\}\right) \geq 2 k-1$. Since $f\left(W_{i} \cup\left\{v_{i}\right\}\right)=$ $2 k-1$ if and only if $H=K_{k-1}$, we obtain $f\left(W_{i} \cup\left\{v_{i}\right\}\right) \geq 2 k$. Finally, if $f\left(v^{\prime}\right)=2$ for any $v^{\prime} \in W_{i}$, then $f\left(W_{i} \cup\left\{v_{i}\right\}\right) \geq 2 k$.

The following theorem is obtained by Theorems 5.1 and 5.2.
Theorem 5.3. For any graphs G and H with $\delta(H) \geq k-2 \geq 0, \gamma_{\times k R}(\operatorname{cor}(G, H))=$ $2 k|V(G)|$ if and only if $H=K_{k-1}$ or $H=F \circ_{k-1} K_{k-1}$ for some graph F.

6. Some Questions and Problems

Finally, we end our paper with some useful questions and problems.
Question 6.1. Is $M(G)$ a Roman k-tuple graph if G is a Roman k-tuple graph?
Question 6.2. For any Roman k-tuple graph G, is there a Roman k-tuple graph H such that $G=M(H)$?
Question 6.3. Find graphs G whose Roman k-tuple domination number achieves the bounds in Theorem 4.2?
Question 6.4. For any graph G, whether $\gamma_{\times 2 R}(G) \geq 2 \gamma_{R}(G)$?
Problem 6.5. Find $\gamma_{\times k R}\left(M\left(C_{n}\right)\right)$ for $2 \leq k \leq 4$ and $\gamma_{\times k R}\left(M\left(P_{n}\right)\right)$ for $2 \leq$ $k \leq 3$.

Problem 6.6. Find the Roman k-tuple domatic number of a graph.
Problem 6.7. Characterize graphs G with $\gamma_{\times 2 R}(G)=\gamma_{R}(G)$.
Problem 6.8. Characterize graphs G with $\gamma_{\times k R}(G)=\gamma_{k R}(G)$.
In [7], the authors have defined the total Roman dominating function on a graph G as a Roman domination function $f=\left(V_{0}, V_{1}, V_{2}\right)$ on it with this additional property that the induced subgraph $G\left[V_{1} \cup V_{2}\right]$ has no isolated vertex,
and in a similar way, they have defined the total Roman domination number $\gamma_{t R}(G)$ of G. Since $\gamma_{t R}(G) \leq \gamma_{\times k R}(G) \leq \gamma_{\times(k+1) R}(G)$ for any $k \geq 2$, we have

$$
\begin{equation*}
\gamma_{t R}(G) \leq \gamma_{\times 2 R}(G) \tag{6.1}
\end{equation*}
$$

So, the fnext problem is natural to appear.
Problem 6.9. Find graphs G satisfying $\gamma_{\times 2 R}(G)=\gamma_{t R}(G)$.

Acknowledgments

The author wish to thank the referee for his/her usefull comments.

References

1. E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemi, S. T. Hedetniemi, Roman domination in graphs, Discrete Mathematics, 278, (2004), 11-22.
2. F. Harary, T.W. Haynes, The k-tuple domatic number of a graph, Math. Slovaka, 48, (1998), 161-166.
3. T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, 208. Marcel Dekker, New York, 1998.
4. T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Domination in Graphs: Advanced Topics, Monographs and Textbooks in Pure and Applied Mathematics, 209. Marcel Dekker, New York, 1998.
5. M. A. Henning, A. P. Kazemi, k-tuple total domination in graphs, Discrete Applied Mathematics 158, (2010), 1006-1011.
6. K. Kämmerling, L. Volkmann, Roman k-domination in graphs, J. Korean Math. Soc. 46(6), (2009), 1309-1318.
7. C. H. Liu, G. J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim., 26, (2013), 608-619.
8. I. Stewart, Defend the Roman Empire!, Sci. Amer. 281(6), (1999), 136-139.
9. D. B. West, Introduction to graph theory, 2nd edition, Prentice Hall, USA, 2001.

[^0]: Received 29 August 2017; Accepted 06 February 2019
 ©2020 Academic Center for Education, Culture and Research TMU

